20.4.10

IPv6 and its difference from IPv4


Internet Protocol version 6 (IPv6) is the next-generation Internet Protocol version designated as the successor to IPv4, the first implementation used in the Internet that is still in dominant use currently. It is an Internet Layer protocol for packet-switched internetworks. The main driving force for the redesign of Internet Protocol is the foreseeable IPv4 address exhaustion. IPv6 was defined in December 1998 by the Internet Engineering Task Force (IETF) with the publication of an Internet standard specification, RFC 2460.
IPv6 has a vastly larger address space than IPv4. This results from the use of a 128-bit address, whereas IPv4 uses only 32 bits. The new address space thus supports 2128 (about 3.4×1038) addresses. This expansion provides flexibility in allocating addresses and routing traffic and eliminates the primary need for network address translation (NAT), which gained widespread deployment as an effort to alleviate IPv4 address exhaustion.
IPv6 also implements new features that simplify aspects of address assignment (stateless address autoconfiguration) and network renumbering (prefix and router announcements) when changing Internet connectivity providers. The IPv6 subnet size has been standardized by fixing the size of the host identifier portion of an address to 64 bits to facilitate an automatic mechanism for forming the host identifier from Link Layer media addressing information (MAC address).
Network security is integrated into the design of the IPv6 architecture. Internet Protocol Security (IPsec) was originally developed for IPv6, but found widespread optional deployment first in IPv4 (into which it was back-engineered). The IPv6 specifications mandate IPsec implementation as a fundamental interoperability requirement.
In December 2008, despite marking its 10th anniversary as a Standards Track protocol, IPv6 was only in its infancy in terms of general worldwide deployment. A 2008 study by Google Inc. indicated that penetration was still less than one percent of Internet-enabled hosts in any country. IPv6 has been implemented on all major operating systems in use in commercial, business, and home consumer environments.

Differences Between IPv4 an IPv6

IPv6 is based on IPv4, it is an evolution of IPv4. So many things that we find with IPv6 are familiar to us. The main differences are:
1.Simplified header format. IPv6 has a fixed length header, which does not include most of the options an IPv4 header can include. Even though the IPv6 header contains two 128 bit addresses (source and destination IP address) the whole header has a fixed length of 40 bytes only. This allows for faster  processing. Options are dealt with in extension headers, which are only inserted after the IPv6 header if needed. So for instance if a packet needs to be fragmented, the fragmentation header is inserted after the IPv6 header. The basic set of extension headers is defined in RFC 2460.

2.Address extended to 128 bits. This allows for hierarchical structure of the address space and provides enough addresses for almost every 'grain of sand' on the earth. Important for security and new services/devices that will need multiple IP addresses and/or permanent connectivity. 

3.A lot of the new IPv6 functionality is built into ICMPv6 such as Neighbor Discovery, Autoconfiguration, Multicast Listener Discovery, Path MTU Discovery. 

4.Enhanced Security and QoS Features.
or in simple words 

IPv4 means Internet Protocol version 4, whereas IPv6 means Internet Protocol version 6.

IPv4 is 32 bits IP address that we use commonly, it can be 192.168.8.1, 10.3.4.5 or other 32 bits IP addresses. IPv4 can support up to 232 addresses, however the 32 bits IPv4 addresses are finishing to be used in near future, so IPv6 is developed as a replacement.
IPv6 is 128 bits, can support up to 2128 addresses to fulfill future needs with better security and network related features. Here are some examples of IPv6 address:
1050:0:0:0:5:600:300c:326b 
ff06::c3 
0:0:0:0:0:0:192.1.56.10

0 comments:

Post a Comment

Leave your Comments